Rejection of false matches for binocular correspondence in macaque visual cortical area V4.

نویسندگان

  • Seiji Tanabe
  • Kazumasa Umeda
  • Ichiro Fujita
چکیده

A plane lying in depth is vividly perceived by viewing a random-dot stereogram (RDS) with a slight binocular disparity. Perception of a plane-in-depth is lost by reversing the contrast of dots seen by one of the eyes to generate an anticorrelated RDS. From a computational perspective, the visual system cannot find a globally consistent solution for matching the left and right eye images of an anticorrelated RDS. The neural representation of a global match should therefore be insensitive to binocular disparity in an anticorrelated RDS. Most neurons in the striate cortex (V1) respond to binocular disparity in anticorrelated RDSs, suggesting that further cortical processing in extrastriate areas is necessary to fully account for the matching computation. We examined neural responses to dynamic RDSs, both normal (correlated) and anticorrelated, in area V4 of the monkey visual cortex. More than half of the V4 cells were sensitive to the horizontal disparity embedded in a correlated RDS. Most of them greatly attenuated their selectivity for disparity when the RDS was anticorrelated. This attenuation was apparent from the response onset, and the degree of attenuation did not correlate with neuronal response latencies. Unlike the disparity tuning of V1 neurons to anticorrelated RDSs, that of V4 neurons was not an inversion of tuning to normal RDSs. Our results suggest that responses to false matches between contrast-reversed dots in the left and right eye images elicited in V1 are substantially reduced by the stage of V4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving visual correspondence between the two eyes via domain-based population encoding in nonhuman primates

Stereoscopic vision depends on correct matching of corresponding features between the two eyes. It is unclear where the brain solves this binocular correspondence problem. Although our visual system is able to make correct global matches, there are many possible false matches between any two images. Here, we use optical imaging data of binocular disparity response in the visual cortex of awake ...

متن کامل

Stereopsis and 3D surface perception by spiking neurons in laminar cortical circuits: A method for converting neural rate models into spiking models

A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model shows how spiking neurons that interact in hierarchically organized laminar circuits of the visual cortex can generate analog properties of 3D visual percepts. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface fil...

متن کامل

Spatial frequency integration for binocular correspondence in macaque area V4.

Neurons in the primary visual cortex (V1) detect binocular disparity by computing the local disparity energy of stereo images. The representation of binocular disparity in V1 contradicts the global correspondence when the image is binocularly anticorrelated. To solve the stereo correspondence problem, this rudimentary representation of stereoscopic depth needs to be further processed in the ext...

متن کامل

Spatial frequency integration for binocular correspondence in macaque area

Neurons in the primary visual cortex (V1) detect binocular disparity by computing the local disparity energy of stereo images. The representation of binocular disparity in V1 contradicts the global correspondence when the image is binocularly anticorrelated. To solve the stereo correspondence problem, this rudimentary representation of stereoscopic depth needs to be further processed in the ext...

متن کامل

A laminar cortical model of stereopsis and 3D surface perception: closure and da Vinci stereopsis.

A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 37  شماره 

صفحات  -

تاریخ انتشار 2004